
AD-A240 382 ENTATION PAGE Form ApprovedOMB No. 0704-0188

I f~f~j!~J ~iage 1 hour pet response. Including the lime to, reviewinrg lnsrruttuns 5eathing existing data sources.ahrn n11111111 IN 1111 1111111111111111fo1 mat Ion SLend .umments iegaiding this burden estimate orany other aspeqtof thiscollection of Information Including
)I rectorate for Information Operations and Reprts. 1215 Jefferson Davis Highaway, Suite 1204. Arlington. VA 22202-4302
1 (0704-0188) Washilngton DC 20503

',:,L, , ..... ..... .PORT DATE 3 REPORT TYIPE AND DATES COVERED

August 1991 Professional paper

4 TITLE AND SUBTITLE 5 FUNDING NUMBERS

TOWARD A GENERAL THEORY OF C3 PROCESSES: PART 11 PR: ZT52 PR: CD32
'E: 0601152N PE: 0305108K

6 AUTHOR(S) WU: DN306225 WU: DN4S8828

I. R. Goodman

7 PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8 PERFORMING ORGANIZAION
REPORT NUMBER

Naval Ocean Systems Center
San Diego, CA 92152-5000

9 SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10 SPONSORINGMONITORING

Office of Chief of Naval R-earch Office of the Scretary of Defense AGENCY REPORT NUMBER

Independent Research Programs (IR) Research and Engineering
OCNR-10P Washington, DC 20363
Arlington, VA 22217-5000

II SUPPLEMENTARY NOTES

12a. DISTRIBUnION/AVAILABILIY STATEMENT SEIBUTII991ODE
SEPI 9UTIONCOE

Approved for public release; distribution is unlimited.

13. ABSTRACT (Maximum 200 words)

In a previous paper, the author has proposed a model of general tactical C3 processes. In that approach, an initial
attempt was made at axiomatizing the essence of Cavariables were identified, /'uch as a node state variables, including posi-
tions, equations of motion, damage level, supply level, and states of knowledge concerning other nodes, both friendly and
adversary. Other types of C3 variables were also identified, such as detections, hypotheses furmafions, incoming informa-
tion in the form of signals ahd weapons, and data fusion. Then, primitive relations involving these variables were postu-
lated. This, in turn, leads to a basic theorem zhowing the recursive dynamic evolution of a typical node state complex. Be-
cause the theory established here is a fort ial onc, both stochastic and otier logical interpretations - such as fuzzy logic -
can be formulated compatible with the above-mentioned theorem. All of this was shown to leau to inputs into an overall C3

decision game between the friendly and adversari forceb, where each player's move corresponds to a choice of design in
terms of the primitive relations among the C3 variabks. In addition, implementation issues concerning computations
involved %ith the above theory were cons'Jered. A new technique was exhibited which combined "exact linearizations" with
gaussian sum representations of distributions resulting in general in substantial reductions of computations. 1 .i

1

91-10547
Published in Proceedings 1989 Symposium on C2 Research, 1989.I I II 11!IIIII1J1111

14 SUBJEOTTERMS 15 NUMBER OF PAGES

. ,V-data fusion , uncertainty measures , 64RI D
combination of evidence •game theory 16 PRICECODE

17 SECURITY CLASSIFICATION 18 SECURrIY CLASSIFICATION I 19 SECURITY CLASSIFICATION 20 UMITATION OF ABSTRACT
OF REPORT OF THIS PAGEI OF ABSTRACT

UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED SAME AS REPORT

NSN 7540-01-280.5500 Standard form 298

91 9 121 0



UiNCLASSIFIED

21a NAME OF RESPONSIBLE INOMIDUAL 21b TELEPHONE (incIudjoAtea Code) 21C OFFICE SYMBOL

1. R. Goodman (619) 553-4014 Code 421

NSN 7540-012M5500 Standard fo-rm M9

UNCLASSIFIED



1989 Symposium on
Comma,-nd and Control

Research

14142 Acaosgi= o r

tiTXS GRi&I

Basic Research Group
Joint Directors of Laboratories

and A~~b~t o~

National Defense University -O ado

Science Applications International Corporation-
McLean, Virginia 22102



TOWARE A GENERAL THEORY OF C3  PROCESSES:

PART 2

M_.I.R. Goda

Code 421

colmmnd and Control Deparbent
NAVAL OCEAN SSMSC&'Iv

San riego, California 92152-5000

ABSTRANZ to the more standard global/macroscopic ap proaches
taken by many researchers. (See [1] and 12] for

In a previous paper, the author has proposed a b y anyureseahe (See (1] a mor

model of general tactical C5 processes. In that brief surveys of the field; see [3] for a more ex-
approach, an initial attempt was made at axiomatiz- tensive overview of work during the past ten years.)

ing the essence of C3. First, relevant C3 variables Efforts are underway in relating the author's work
were identified, such as node state variables, in- with that of others' independent approaches, includ-
cluding positions, equations of motion, damage ing the work of Rubin and Mayk [5],[6], Levis et al.
level, supply level, and states of knowledge concern- [7],[8, Gardner [4], and Ingber 1],[lO]. Future
ing other nodes, both friendly and adversary. Other research will concentrate on developing fully con-
types of C3 variables were also identified, such as nections with these researchers.
detections, hypotheses formations, incoming inform- 3
ation in the form of signals and weapons, and data In summary, previously in [1] C processes were con-
fusion. Then, primitive relations involving these sidered as interacting networks of node complexes
variables were postulated. This, in turn, leadsto a of decision-makers and analyzed basically as follows:
basic theorem showing the recursive dynamic evolu- C3
tion of a typical node state complex. Because the i. primary variables can be identified and
theory established here is a formal one, both sto- classified into a basic taxonomy:
chastic and other logical interpretations - such as GLOBAL
fuzzy logic - can be formulated compatible with the Complexity, distribitivity, hierarchy
above-mentioned theorem. All of this was shown to World views, politics
lead to inputs into an overall C decision game be-
tween the friendly arid adversary forces, where each INTRANODAL ( Within Nodes)
player's move corresponds to a choice of design in Node state proper N
terms of the primitive relations among the C vari- Number of troops
ables. In addition, implementation issues concern- Threat levels

ing computations involved with the above theory Equations of motion

were considered. A new technique was exhibited which Supply/attrition levels
combined "exact linearizations" with gaussian sum Damage levels
representations of distributions resulting in general Importance measures
in substantial reductions of computations. Knowledge aspect K

Algorithms available
In conjunction with the above model, some basic Estimation of other intranodal variakles,
questions have remained unanswered: How can submodel friendly and/or adversary
choices fqr the key data fusion aspect affect the Node structure T
overall C model ? Should probability or fuzzy sets Detection Det
be used in implementing data fusion ? Can one com- Hypotheses formulations Hyp
pare and contrast these choices quantitatively ? Consultations Con
In response to these issues, the current paper con- Algorithm selection Alg
siders treatt.ng comparisons and contrasts of choice Data Fusion DF
of uncertainty measures from a game theoretic view- Decision processes Dec
point, extending previous work of DeFinetti and
Lindley. An outline of a procedure is also presented INTERNODAL (Between nodes)
here for directly incorporating the comparison of Node output responses R
choices into the overall C3 model and determining Medium/environment parameters Q

the effect upon performance and effectiveness. Node reception/input"signals" S

1. IN'fZ PDClCtJ 2. C3 system primitive sufficiency relations can
be determined, leading to a full formal theory of

The author proposed a comprehensive theory of tact- node state evolution:
ical C systems based upon a microscopic bottoms-up
viewpoint [1]. This approach is in contradistinction
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1+ ++(N""I .:'+ TN , ,P. I ) '  (N' IR ,) ) "IIIW G:'  Ao IMOE (r ) .( .

SNSRRDec,N) fOr ome ;omputble functional W".

(T1N+,5,R,fl) (TIN) 8. Loss of overall C1. game (C/r,C )
(rJ+(SP-,i) - illfS,N) O.(IILTH(CFr) ,HLTII(Cd))-LOSS(C") (1

(sIR' ) - (SIR-) where Af is a loss function, Fr is the index repre-

(RCIF) (R'IN) sentlng the friendly C syst m, Ad is the index(1) .IS representing the ad ersary C system, and it is

where i is the set of all N's and their previous assumed that each C system can be identified as the
states and where superscript ++, +, (Hank), - tuple
indicate relative node processing times. C3  (AX) p(N) ; ALC,
3. Under the assumption of 2 and general CE) con- ALDP ' PAL DP P'
ditional event algebra extending both ordinary prob-
ability logic and fu y logic (in Zadeh's sense), and where equivalently one can write
among others (11], N can be obtained recursively .. 3_3 3as an explicit functional of the primitive suffici- LOFSC) A/(Cpr 'Ad )

ency relations in 2 and logical conjunction and dis-
junction operators In an integrated-out chaining of where
conditional forms. Symbolically, N -2.4Wi (1.10)

forN q(AX:N;CE; • v ) ; all N, (1.2) 9. Full C3 Design Game (CFr , d ; LOSS) is
for computable functional '. (See [1], Theorem 4.1.)

4. Under the further assumptions of a full alge- thus determined through steps 1-8.
braic logic description pair ALDP, i.e., compatible 10. Obtain for C3 Design Game, bayes decision
semantic -evaluation (or models) I is added to CE, functions, minimax, least favorable distributions,
the node state,' general distributions (or possi- and,more generally, sensitivity of loss to changes
bility functions, etc.) can be obtained: in the designs, i.e., choices for functional

descriptions for AX and ALDP, etc., for each side.

PALDP ) 1+ ALOP (AX);pALDPOO)J .1 .1 (Again, see [I] for further details.)
In order to implement the above steps, each inter-

(1.3) mediate computation must be reassessed and possibly
for al N wi th' functional q( computable, expanded and evaluated appropriately. Pruning of

3 tLe more remote possibilities of combinations of
51 The overall C system's averaged value or C variable values can be of great benefit here.
rneasure of central tendency is determined as Recently, P.Glrard C12m has shown that a feasible

and faithful implementation scheme for at least
,ALDPCC) AV(PALDP(rJN C (1.4) steps 1-4 relative to ALDP choice CPL (conditional

'ALDP b probability logic) can be obtained for a simplified
version of the outer/inner air battle scenario,13. C" functions of primary vari ables and their

distributional and logical characteristics can be In [13] Goodman established a beginning of a generalcrta and nd chaatheory for data fusion and pointed out relationsa c.ertained: to C3 systems as a whole. In [14], a particular im-MOF Measures of effectiveness/system plemeftation of data fusion was initiated via the
performance or specification; concept of "measure-free" conditional events -

Synchronicity / asynchroniclty, alluded to in the above development of the C3 Design
Timeliness/duration of battle, Game - with emphasis on developing a full condition-
Political gain/loss, al probability logic. In E16], this idea was extend-
Monetary gain/loss, ed and modified for the possible choice of Zadeh's
Overall attrition/supply levels, fuzzy sets and logic, as well as for related logics.
Overall damage and/or morale, A basic issue for all of the above is the actuw2

choice of AtV'V: probability? fusmL, se? Depeter-
-OE(C) ( 3 Shaf(,)r meaaurev Obviously, if all pertirant in-
ALDP formation is sensor-oriented and/or stochastic in

fr some functional Xll computable via transform nature with reasonably well-defined distributions
t riqcr . available, then PL (probability logic) should he

considered. On the other hand, if natural. language
i, malth of overall C' ysteii (friendly o, descriptions are present in soire quantity, then

w rry,, feparately) is possibly Zadeh's fuzzy set scheme is more apropos.
Other situations can ?rise, where the Dempster-Shafer measures appear attractive. Thus,w at to do?



2. IE XnSI O J NI-LINXY form, being no longer a probability, while for any
C ME: BASIC CCU= internal- i.e., within the argument-transform,

probability is changed- but to another induced
In response to the last-mentioned issue in the last probability! Thus, it is not difficult to show
section where one wishes to choose the most apropos ([18), Theorem 4.2.2) that probability itself is
ALDP for a given situation, DeFinetti [16] indeed inadmissible for non-square score functions.
showed the following: The class of all finitely Moreover, although Lindley correctly concluded
additive probability measures coincides with the that max-possibility measure was not generally
admissible class of nonrandomized decisions for a admissible for arkv choice of score function f
particular decision game. In that game, the aggre- (still for aggregation as a sum), many related poss-
gated loss is a cumulative sum of scores in the ibility functions are generally admissible and
form of squared differences between any choice of in fact max=possibility can be shown to be a uniform
uncertainty function (not necessarily probability) limit, under mild conditions, of generally admissi-
and the indicators of possible combinations of ble possibility measures. Furthermore, Lindley's
corditional events. Later, Lindley [17] extended conclusion that all Dempster-Shafer belief measures
Definetti's game by replacing the score function are not admmisible for any choice of score function
by a much more general form than squared difference, is also in error, since the important class of fixed
but he did retain the aggregation function a; .rith- powers of probability measures when the power ex-
metic sum. Lindley showed, depending on the score ceeds or equals unity is generally admissible.
function f chosen,d unique corresponding nondecreas- In response to 2: DeFinetti, as well as
ing function Pf over unit interval [0,1] back to Lindley, both assumed firstly the validity of the
itself exists, Ie. P :[0,1] [0,1] , r-zch use of conditional event indicator functions as
that Pf(O)=O, Pf(l)=, aid most importantly, ifV 1 ("ufndetABmie, An B

is any admissible uncertainty measure (admissi- (AIB)() = , Aun Betermined"), if w c B'

bility here must be clarified), then P O° is a , if c e A'B (i.e., BnA)

finitely additive conditional probability measure. (2.1)
Conversely, if pf is such that it is strictly
increasing over .[0,),then PfOp a finitely iddi- for any sct A,B S , some fixed universal set, o

tive conditional probability measure implies that c fl, and where (AIB),in Von Neumann's spirit, is
p is admissible. thought of both as the conditional set or event

"A given B" (antecedent B, consequent A) and as its
However, Lindley also claimed that a number of well- indicator function as given in (2.1). This relation
koown uncertainty measures did not satisfy the is obviously reasonable. In addition, both Definetti
above basic criteria for being admissible for a.y and Lindley assumed the validity of the basic chain
choice of score function f and hence were not ad-
mtssibZe in a strong sense. These included signif- intersection relation among conditional events:
icance tests, Zadeh's max-possibility measure,
and Dempster-Shafer belief measures among others. (ABIC) = (AIBC)(BIC); all A,8,C - (2.2)
(See [17], pp. 9 et passim.) Despite a lively This of course corresponds to the well-known con-
discussion at the end of Lindley's article by sev- ditional probability relation
eral of the leading researchers in the field, the
chief issues involved in the work remained surpris-ingl unouced:p(ABJC) = p(AJBC)-p(BIC); all A,B,C c 4, (2.3)
ingly untouched:

for which p(BC) > 0 ,4 sP(n) boolean algebra of
g . Were Lindley's conclusions concerning the sets, and p'A4+ [0,1] a finitely additive condition-

general inadmissibility of the named list of un- al probability measure.certainty measures actually correct?
Although DeFinetti briefly mentioned developing a

2. What roie does DeFinetti's concept of calculus of operations among conditional events,
conditional event indicator functions and their in both volume 1 and 2 of [16] (see [16], vol.1,
assumed relations play - used tacitly by Lindley Chpt. 4 and vol. 2, pp. 266 et passim to 333),
and not part of the standard literature (semantic- he did not take iny of these ideas further, nor
oriented) for conditional probability ? did Lindley [17]. However, these questions are

3. Can Lindley's almost informal presentation fully addressed in [19]-[21], where not only is
be made more rigorous and put into a pure game (2.2) derived - as well 2s (2.1) - from a minimal
theory context for further analysis? number of natural assumptions, but also a full

calculus of operations and relations is developed
4. What happens when the sum Lindley used for in a non ad hoc manner extending the usual ones

aggrgation is replaced by a more general function? for the unconditional events describing a typical
Lindley did address this question in part, but no boolean algebra. In addition, a number of interpst-
actual answer was provided, ing mathematical properties are shown for the

This led to [18], where it was shown that: ensuing conditional event algebra, including:re-
lations with Koopmann qualicative conditional prob-
ability structures; a sound and complete version

In response to 1: Lindley's conclusion were of propositional CPL (conditional probability
not entirely true. To begin with, a monotone trans- logic)-and a full algebraic abstraction showing
form on probability is not the same as probability- such conditional extensions of boolean algebras
unlike other mathematical concepts, probability-as are themselves - though not boolean by failure of
a measure is very sensitive to any otnrnal trans-
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the Law of Excluded Middle (or Complements) - At this point, consider again DeFinetti's concept
are indeed bounded distributive lattices whi-h are of conditional indicator function as given here in
relatively pseudocomplemented, possess an involution (2.1) . It is obvious from the definition that
operator, are DeMorgan and absorbing, as well as
possessing a number of other properties, and can (AIR) = A and (AIB) = (ABIB);all A,B c A. (3.6)
be shown to extend the Stone Representation Theorem
[21]. See also the previous related work of Schay One could also iake the following assumptions
£221 and Calabrese £231. which are natural homomorphisms relative to conse-

quences for a fixed comrnon antecedent:
In response to 3: It is shown in some detail in ASSUMPTION I:

[181 that bayes decision functions, least favorable
prior distributions, game values, and other game For all A,B,C c A,
theoretic properties can be derived for the DFL
uncertainty game. Most importantly, one can not (AJB)-(CJB) = (ACIB) , (3.7)
only determine the analytic conditions for admissi- (AIB)u(CIB) = (AuCIB), (3.8)
bility of competing uncertainty measures- as will
be outlined later here - but also use directly the (AIB)' - (A-IB) . (3.9)
overall uncertainty game loss function to rank or
evaluate such measures numerically for various One could also add or replace Assumption I by thegiven situations. The latter is most compatible analogue of probability conditional chaining forms
with the spirit of developinga comprehensive theory mentioned earlier which DeFinetti and Lindley em-
of C3 systems integrating data fusion.(See sect.6.) ployed in their derivations:

In response to 4: It is shown in [18] that ASSUMPTION 11:
non-sum aggrgation functions can be used in de- For all A,B,C e A,
termining the overall uncertainty game loss which
do not yield probability measures or functions of (ABIC) = (AIBC)-(BIC). (3.10)
them as the admissible class. (In particular, see
[18], section 7.) This topic will not be considered Assumptions I and/ or II will be stated explicitly
any further here, except to show some definitions, where made. Otherwise, only assume that DeFinetti's
In the next section, the rigorous analysis for the cenditional indicator set function and its propertyDFL uncertainty game is begun. as in (3.6) holds.

3ext, let throughout the analysis a2 < a0 < aI < a3
, I VEK T Gi be fixed reas numbers, and recalling the symbolaas introduced in (2.1 ), let f: [a2,a3]x{0,1,"I}

Let,throughout,S be a fixed nonempty set and le 3A E P(n) a fixed boolean algebra of subsets of where R denotes the real euclidean line of numbers,
Q2 with the usual set notation u, (for n), (), be such that:
0, etc. Also, let for each positive integer n, An (i) For each j c O,l}, f(.,j) is continuously
denote the class of all n-sequences or n-tuples of differentiable with a unique global minimum in
A with typical element denoted as A(A.-,A), [a2,a] at a., so it is strictly increasing over
A.2A . In turn, let [a.,a ] and 4trictly decreasing over [a2,a ].n~ = Au uAu-(3.1)
bete -A u-(.) (ii) f(',0) = 0 over [a2,a3]•
be the class of all finite sequences of sets in A.
Further, relative to conditional sets, define: If f satisfies all of the above, call f a ocore

d d. fzmczton.
A = (AIA) = ((AIB): A,B c A }, (3.2) Next, denoting the set of all real finite sequences

the class of all conditional events of A, and as d 2 3
d du(AXA) .u -

3  3RuR u u- , (3.11)XW=(AI~m A U (33) suppose that :L R is a function such that:
the class nf all finite sequences of conditional
sets eytending A with typical element denoted as (a) is continuously differentiable in all of
a = ((AijBI ).. (AnlBn)) . Also, for each B c A, its arguments.
denote the class of all conditicnal events with (b) -P is strictly increasing in each of its ar-
antecedent B as guments seperately over any R'.

d
AB = {(AIB): A c A ; (3.4) (c) For any positive integer n, letting 0 be the

n by 1 zero vector in Rn nand define the class of all finite sequences of ) 0events having U;e same antecedent as n (3.12)

U U (AIB) A (3.5) In this case, call any such an aggreaga¢on
0 BcA n=l fu.ction. The most important aggregation function-

and the one that will be used almost entirely hereis -p +, ordinary arithmetic sum.
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Next, define d
A d (3.13)0(Y) = a(C), al e Y (3.22)

is the same constant v'.&ue depending only on y.

and call it the space of roves or puzescrategies of Next, call
player I or Atwze. "A,,) corresponds to all possible

values of unknown parameter co c ; in com.ination A2 _ [a2 ,. 1 A (3.23)
with all possible available experiments, i.e.,

finite sequences a of :nconditional,or more gn;ier- the space of r-oves or pure strategies of player 2
ally,conditional sets from A , with evaluation or the Decision-maker. Equivalently, A2 is the

using (2.1), d space of all zr,ertainty reasures u:A - [a2 ,a3].

a(ca) = ((A,1lB,)(c).. (AIB n)(c )) (3.14) In turn, define the overall loss fozctian

thus representing in reality which conditional Lf,,: A(1) x A2 - R, where for any a-c , any

events (A 1B.) in the sequence occur, i.e., for ci c l , and any p % A
which W cJA.-B. , yielding (AIB.)(w)=l ; which do 2

not occur, i.e., for which ca cA B. , yielding Lf;,( ;0S..iL1&. =,..(Aa),a(L))), (3.24)

(AIB.)( w) = 0 ; and which are uncertain in their where d

occurrence, i.e., for which o c B'. , yielding ia) =(1(A 1BI),....(An1B (3.25)

(A 1B )(W) " 
and

f(p(a),(c)) = (f(,(AjlBj),(A.IB )(a)))

Next, define the caronical parti;ior. ,w(-zr(gv ( r B jaI
H:A - PP(A), where for any positive integer n and £ rtl . (3.26)

any A = (Al ....An) Am But, in view of the identification in (3.21), one

1(A) = (AK: K c n ' (3.15) can replace A(,) by A1  and redfine Lf,, equival-

n ently to (3.24) as Lf ,: A x A2  R, where
where for each subset K,

dd

AKd A ' (.6 l= {(a.,Hp.)): a- , •with (3.21) holcing).

I n.n nA (3.17) replace (3.24) by the eouivalent

3n L Lf,, (ZY;v) _d ,(f (Ii( ) ,a(y))) . (3.28)
Define also the fopping T:A e A where for any

AiB i c A, Calld

G ,# A A2  (.9dd

-(AI d (A B, A'Bj, B'. (3.18) replce (132), 42 bf,,te (3v2en

- ~the DeFir-tti-Lin dley zwrtai 'nty 7easure ¢a..
Then, extend to : -  

, where now for any ClA aB AA

33 ( B (And) M Post importantly, it follows that for each a e X

(W (-,(A B A..., B. ) , (3.19) the subgam A(
identified in the natural way as an element in At t, f, 2 ,

Thus,_using (3.19), one can extend Ii in (3.15) to where Lf,,Pi etitdaprpitlhspaeI:en n PP( tA) where now, for any ,a Alealy (t A p t s

I's space fa}xn being infinite, while for the,i() d(T(&)) . (3.20) equivalent subgame (-,.11(a),f2 ;L f,O  player I s

space (,.()) is finite, resulting in an S-gae.
Just as ,(A) is a finite disjoint exhaustive par- Such gates allow for elegant theoretical results

titioning of 2 which is the sal let possible such yielding leas favorable priors, bayes ccision
class from, which all elements of can be obtained functions all existing, closed and bounded con-
as disjoint unions of this class, so is l(,) as a ditional loss (risk) set with a continuous oss
distoint exhaustive partitioning of- relative toa. function, completeness of all admissible decisions,

using (2.1). etc.(See e.g. [24]; see also [18], section 4.1.)

Hence, one can conclude from above that a considered Future work will consider in more detail various
as a function a:fl - 10,1,Oncan be naturally iden- game theoretic properties of DFL.tified with the restriction

a: 9(a.) - (O,,a} , (3.21)

where typically for any y c 1f(a),
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4- AM 3E. o FOR EEL E4 - (((AIBC),(BIC),(ABIC)):A,B,C c A) (4.10)

Among all the many possible game theoretic proper- Thus,
ties one could consider for DFL, admissibility and EI,E 2,E3 cXo; E4 s, . (4.11)
bayes decisions, i.e., bayes upcertainty measures,
stand out in importance. (vi) Define for each t c [0,1],
Let p cA 2 be any uncertainty measure and E A d

arbitrary. Then, define: f

(i) i is E-acFkissibZe wich respect to G iff Thus, Pf:[C,l] (0,12 is continuous nond-creasing

for eachz ac E , there is no v = v C A (restricted with Pf,(O) = 0 and Pf(l) = 1
2

to a without loss of generality) such that Theorem 4.1. ((182, Corollary 3.2.1)

LfG( , v ) LI f,,(a , , Y) (4.1) i c A2 is E -WLAD wrt Gf, iff range()s_ (a oa1.a
2

i.e.,
Lf, (ay;v) : Lf, (-,y,ip);all ycii(a),(4.2) Theorem 4.2. ([18], Theorem 3.2.2

with stric' inequality holding at least fo- some y. Suppose Assumption I holds, then

(ii) i is E-weak ZocaZy" o'isaibZe urt Gf (i) U c A2 is E,E2,E3-WLAD wrt G,.

(E-WLAD) iff for any a ((AIIBI)... ,(A nIBn)) E, iff

for each y c n , with I =1 and each X-O, there is (ii) Pfo: B  [0,1] is a finitely additive
a positive real number r=r(ij,y,X) such that there

:: t,O<tr,such that assuming wlog Lf,(O.,y,) probability measure, for each BcA.

over a0,aIn is non-constant, fur all y c 11(a), Theorem 4.3. (L18], Theorem 3.2.3 )

is te nSuppose both Assumptions I and II hold. Then:
w e e In is the n by 1 vector of all I's. i P C A2 is E E PE3 E -L D w t G +where In (i) ps A2 is E,,3,4LAD wrt 6f,

(iii) For any a c Xn , the jacobi= matrl. here iff
(ii) PfoP [ t0,1 ] is a finitely additive

( 4.4 conditioral probability measure i e., necessarily,
for any (AlB) c A, provided ps(B) •

an m by n matrix function of x c [aD~elIn, where fo (AIB) =(pfoidd(BP AB f 4

m card(iI(a)). Then, it is readily shown: f (.13)
where of course Pfois (B) = Pf(vs(B)), etc.

1 is E-WLAD wrt Gf iff for each a c E, there f I

is no x = x C (a ,a 3" such that It should be remarked that the comdition (ii) of

Theorem 4.2 is in general weler than (ii) for
J" (W)(x-x<O (4.5) Theorem 4.3. Indeed, Aczfl [25], pp. 321-324 has

shown in effect a similar result:that the function
(See r18], Theorem 3.2.1.) in question has not only similar properties to

pfaP , but is also,relative tcil conditional event

(iv) p is E-bayes wrt ixed exrtension of Ga function of the consequent (conjoined with the
Gf, antecedent) and the antecedent.

iff for each a c E there exists a prior probabil-
ity function q=q, (over II(a) such that Theorem 4.4. ((18], Theorem 4.2.1)

inf( Lr ,(.,y,u). qh)) (4.6) Suppose Assumption I holds and score function f is

Ale) (,46 such that P is strictly increasing over (0,1].Thenthe foflowing statements are equivalent for
occurs for v p U . -y given v c A2 wrt Gf,+

(v) Define the following classes: (i) P is X 0-admissible.

El d ((AlB)}: (AIB) c X } , (4.7) (ii) p is ElE 2 "E3-WLAO.

E2  (((AIB),(AIB)):A,B c (4.8) (iii) is is A 0-bayes.

E ( ((AIB),(CIB),(AuCIB)):A,B,C c A;AC=O},(4.9) (iv) P fu:AB - (0,1] is a finitely additive

62



probability measure, for each B c A . (II) There exists h c B such that hop is a
finitely additive probability measure over A.

Proofs: Use Theorems 4.4, 4.5 and the above coiment
Theorem 4.5. ([18], Theorem 4.2.1') concerning strictly increasing P,'s and class R.

I

Suppose both Assumptions I and 1! hold and score
function f is such that P is strictly !ncreasin, Add on the phrase "countably additivety" to any of
over [0,11. Then the folloding statements are equi- the three types of general admissibility, when the
valent for any given v e A2: f yielding P Cor euivalently, the h e R ) is

such that PjV is nct only a finitely additive
(i) p is A-admissible. probabilityfrxeasure (or similarly, for hop), but it

is countably additive.
(ii) 2 is EV "2 E3 E4-WLAO. Some additional definitions will be required in

(iii) p is A-bayes. order to show the general admissibility of a large
class of possibility measures:

(iv) PfoP : A [0,1) is a finitely additive Call a function T:[0,1] 2 _ [0,1] a t-coro.n if
T is associative, cormutative, non-decreasing such

conditional probability rkasure. that

T(s,O) = s ; T(s,l) = 1 ; all sc[0,1. (5.1)

(For background on this and related concepts dis-
5. AEMLSSIBI= CF PmsI Tn cussed below, see e.g. [26].) Call a t-conorm

AM LF M chirredear, if it is also continuous with

Consider first another concept related to admiss- T(s,s) > s , for all 0<s<l. (5.2).

ibility , noting that the space of all uncertainty Max is a t-conorm which is not archimedean, but
measures A does not depend on any choice of score minsum. and probsum are archilredean t-conorms,
function 2 - nor on any aggregate function. How- where
ever, since throughout this section only the case d

= + will be treated: minsum(s,t) _ min(sum(s,t),l), (5.3)

Let I c A2 be arbitrary. Then, if there exists a probsum(s,t) l-([l-s)-(l-t)) , (5.4)
d

score function f such that p is A -admissible wrt sum(s,t) = s+t .(5.5)

game Gf,+ such that Pf:LO, ] - [0,1] is strictly A t-conorm can always be extended to T:[0,1L), [0,1)

increasing, call u ger.mlr y ati--ssibte. If, MOre where
strongly, there is a score function with Pf strict- [0,112 u [0,1)2f u01 [, OlI.[0,1] u- (5.6)
ly increasing over [0,1] such that u is A -admiss- the set of all finite sequences in [0,1), by first
ible, call pstro generalZu en zssibZ. If, more defining for all sc[0,1,
weakly, there is such an f as above.so that I T(s) id(s) d
A-admissible, call v weak generally a igs-esiTse.

Note:all strictly increasing P, for appropriate score and for al sll s2-' sn c [0,1],

functions f coincides with ciass J1 of all strict- T(slis,-, T(T(s,s ),s), (5.8)
ly increasing h:[0,l] -[0,1] with h(O)=O, h(l)=1: 2'' n 2' n-1 n

Theorem 5.1. using associativity and corrutativity.

Let jj c A2 be arbitrary. Then: Ling's Theorem is also relevant here:

(i) Theorei 5.2. (Ling[27J)

(I) V is generally admissible (i) Let T be any archimedean t-conorm. Then, there
exists a function g=g T called the gererator of T,iff

(II) There exists h c i such that hop is such that

a finitely additive probability measure over each (I) g:[O,l] - [o,4-l is strictly increasing,
A, B c A. continuous with g(3)=0 and g(l) .

B (II) -

(ii) (I) p is strong generally admissible T(rs) = g (min(g(r)+g(s),g(1))). (5.9)

for all r,s c [0,1]iff

(11) There exists h c Hi such that ho is a fin- (ii) If g is any function satisfying (I) and T is
ovr any function defined through g via eq.(5.9), then

itely additive conditional probability over A. T is an archimedean t-conorm.

(iii) a
(I) p is weak generally admissible

It follows imediately from Ling's Theorem above
iff that if T is any t-conorm with cenerator g, then
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for all sSS2 s n c [0,1), n=l 2,3,- Theorem 5.4. ( (18), Theorem 5.2.2)

g-1 )+._g(sn},g(1} Suppose again l is at most countably infinite andT(sis 2 -'sn) = (min(g(s1  g .g , consider only A = P(fl), etc. as in Theorem 5.3 ,

(5.10) but now suppose that p: - [0,1) is any given fuzzy
which, turn, can be extended to an at most count- set membership function. Then:
ably infinite number of arguments, by a straight-
forward continuity limit approach. (i) Suppose v is normalized, i.e.,

Next, if p c [0,1 3A , call p a decosc.bl. measure p( ) ; some at 0 fl . (5.18)
if there exists a function T:LO,] * [0,13 called Then,
the composition Z of p - not necessarily a t-cc- (I) There exists T-possibility measure extend-
norm - such that ing p to p1.:P(P.) - (0,1) such that vT is general

p(AuB) = T(p(A),p(B)) ; A,B c A; AB = o. (5.11) admissible'countably additively

Next, if p c (0,13 A and there exists a t-conorm T iff
such that p is decomposable wrt T, i.e., T is the 0I)
compositional law for p, then say that ,j. a
-rossibi--.Y measure. Thus,if p e [0,11 is a T- 1 = 60, (Krnecker dlta).(5.19)
possibility measure, it follows that for any at
most countable set A c A, since trivially, (ii) Suppose

A = ulc) disjointly, (5.12) 0< xo - sup p(O) < 1 . (5.20)
c(cA

then Then,
p(A) T([&((;}) ceA). (5.13) (I) holds as in (i) but with (5.18) replaced by

(5.20)
Conversely, if p:fl [0,1] is arbitrary, i.e., a If
fuzzy set membership function, and if T is any t- -l
conorm, then p can be extended to PT:P(Q) - (0,1), (II) p-lt,l) is a finite set for any 0 < t 

where for any A c P(Q), Proof: The proof of (i) is sicple. The proof of dii)
pT(A) _ T((1(.))A) 1 (5.14) TrT-Tmplies (i1) is also simple and not of any sig-

I c.A nificance, but the proof of (II) implies (1) is

noting iim.diately that p is a T-possibility complicated . The latter is very significant in that
measure. Note that any prbb. meas. p is a T-possi- it provides a general constructive way for obtaining
bility measure with T = minsum. a generator g,which in turn determines an appropri-
With all of the above definitions made, the fol- ate t-conorm T, *where g satisfies (5.16), and
lowing obtains: hence by the oroof of Theorem 5.3, score function f

making PT A -admissible is determined as in (5.17).Theorem 5.3. (D183, Theorem 5.2.1 and ensuing

remarks) g
Unfortunately, due to lack of space, the interested

Suoser tn i= P(), wit infif,1]P te and reader is referred to (18), Theorem 5.2.2 for full
consider only A = with u c (0, . Thus details of the long construction.
here all concepts of general admissibility coincide
with the weak one. Then:

It should be remarked that the significance of
Theorem 5.4 is that it allows essentially-any

(1) p is general admissible fuzzy set membership function over a discrete
iff domain to be extended appropriately to an admissi-
Si oable uncertainty measure over the power class. Even

(11) 1 is a T-possibility measure, where T is if the fuzzy set membership function is normalized
an archimedean t-conorm with generator g such that - as is often the case - by simply establishing a

g():l ; I g(p(u)) S 1. (5.15) slight deficiency, i.e. a maximum less than uhity
• .. cas in (5.20), the adjusted function can then be

used as above to lead to an admissible extension!(ii) (I) p is general admissible countably additive- Finally, note that the condition in (ii)(ii) is
ly iff satisfied for all p:I:l - (0,I], when n is finite.

(IT) p is a T-possibility measure such that T
is an archiredean t-conorm with generator g so that heorem .. ((18), theorem 5.2.3)

g(1)=1 ; Y g(-()) = .(5.16) Suppose the saMe general hypothesis holds here as
£.Cfl in Theorem 5.4 (ii). Suppose also, that there exist

nonnegative real numbers t, t such O~at
Proof: In the above, note that one has the relation 2
beL~een the score function f making . A -admissible card(p-lI/n l(n-I))) s tnt2 , (5.21)
and generator 9: i adv[/ /-0 : 'n2,(.1

g 2 Pf (5.17) for all positive integers n ; 2.

Then, though it is easily seen that the t-conorm
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extension in the form of Zadel-'s max possibility Y i all nonvacuous disjoint, and for any uncertainty
measure u a is not general adm~issible (see measure ji:A - (0,I], note: In regard to (4.6), one
Theorem 5.3, noting as before that max is not an ca- writ,1fraykc. ro rbblt esrarcimden -conorm)1, it is the unifform2 limit in qA (,],teeected loss wrt a as
all A c P(C') such that A i-Fdisjoint from the set (A,t: (xe), card(All bounded, of the general admissi- Pf4+(A~p;q)= Lfc ' +q~
ble T r-possibility measure extensions v T oil p,

as r approaches i- , where for all s.C cr[O.1], .
j)4 ,.,s r, 3 i.)/. ~( )A( )-l

T r (sI ..Isn )a in(s I,* r .1 n r (5.22) =X XfuA)AY~(~

n
This section is concluded with a brief result con- 1 ( f(I(A-)Ml)q(A_) + fW, (A .)0(bq(A) *
cerning Dempster-Shafer belief measures. For more j-1 J 61extensive treatment, see again (18]. For definitions(61
and backQround, including relations between random Hence (6 -1) shows (see definition 4(iv) and eq.set supercoverages and Poincar'e expansion gererali- (4.6)j that the minimal expected loss is
zations, see (25]l.

Apropos to Lindley's conclusion that essentially inf ( Pf +(A,p;q)) = pf4(,Y,*;q) , (6.2)
all belief measures are not generally admissible: v7 er al)

Theorem 5.6. ((18], theorem 6.2) where i is (A}-bayes; wrt mixed extension game of

-pose that f: is a finite space and once more Gl is given by differentiating (6.1) wrt iz(A.
consider,only A =PIP.) with A I in effect restricted 1
to [0,1l^. Also, consider the class f'(u(A.).1)q(A.) + f'%(iz(A;),0),(l..q(A.))1 = 0

,rJ: J::n (0,1] is a finitely 3JJ

additive probability mzeasure, wihi qiaett

r a 1 arbitary real ) (5.23) pf (Pi (A) (A A. 1 I.n (6.3)
Then, obviously by Theorem 5.1 (iii) with h( ) i-e.
( )r, a is a class of (weak) generally admissible cPi = q .(6.41)
uncertainty measures. But', in addition, 0 is a . q
class of D-mpster-Shafer belief measures. Also, as q varies arbitrary, compatible with Ter
Proof: See (18]. where the criterion for belief en 4.4,

iunctions~~ ~ ~ ~ ~ isvrfe o v=p : q:A - [0,11 is any finitely additive

I ( 1)card(A.8)__(B) 2, 0 ;all A E A. (5.24) q prior probability ,;easurel
BSA u =set of all A - adm-issible wncertainty measures.

W- (6.5)
6. FMUMZ OF EFr In particular, consider DeFinetti's original square

AND USE Wrni C3 Sy7M! loss ftunction f = f 0, where
d2

The thrust of sections 2-5 was to show that the O-C: f (t,j) =co-(t-J) ;tE[O.1];z.2
game - on at least a theoretical level - provides (6.5)
criteria for determining the admissibility or bayes- c a fixed positive constant, which through further
ian status for any given uncertainty measure: namely 0
it must be essentially a monotone increasing trans- study is negligable. Then, not only are alt of the
form of a probability measure. However, these above results valid fot this case, but reduce to:
results, in themselves, are not enough to provide
practical guidelines for direct comparisons of un- PJQ = 2c t/(2c t-2c (t-1)= t ; tt(O,il]i.e.
certainty =easures. One m-ust be able to compare 0 0
losses directly and numerically. P, = identity function; (6.6)

Assuze throughout most of the fol lowing analysis-
unless otherwise indicated- that ,F; z , -:1 is a rn- so that for any p;rior q:,, (0,11],
vacuous finite space, and restrict A so that only 67
unconditional events are considered, i.e .,~ q

(0.1~ A = P(n). For any R=(A.i E A 1 with minimzal expected loss
It W it - c .- . . -q ( ,; )) 2q (A.

canonical partitioning 1,At~,. y say, Wit a jfl uj ;q
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q( A)2(lq(A) Thus, e.g., if A is an actual disjoint exhaustive

3 /partitioning of nonvacuous sets wrt 0 (so that one
that s can let without loss of generality Aj = y.) and if

so that simplifying, n
n I p(A.) : 1, then it is eas- -) show K(A,p) occurs

Pf +(Apq ;q) = c0  y ((l-q(Aj))q(A )).(6.0 j=l j
f j=l uniquely for q=q, where , for j=l,.. ,n

Moreover, if p A is arbitrary, then by adding and q (A.) (A) + (I/n)(l.. p(A , (6.17)

subtracting q(Aj) from p(A.) inside (6.1) and noting k1

the sum of cross terms is a sum of zero, with corresponding value n

Pf ,+(A,p;q) = p f,(A, P;q) + z(A,P-q) (6.9) ( = (1/n)(1- I (6.18),f +f1 k=1

where o which obviously approaches zero as n approaches 4-.
d n ( q(A)2 Hence, relative to the criterion in (6.16), all p
q co . (p(A (6.10) e A2 for the above assumptions behave asymptotically

j=l as if they were the optimal solution q.
Hence, if score function f0 is used and prior Consider again Theorem 5.4() with Q finite and

probability measure q:A - [0,1] is known, then a as above A = [0,1]', A=P(sl). Then, compatible with
natural way of evaluating any compet-ing uncertainty the last r~mark following the theorem, it is clear
measure is to use -(A,p-q), whose minimum is of by a continuity argument, there is a unique r=r
course zero for p 1 = q. for each given p: - [O,lI],such that

q I ~,)r =1 .(6.19)

On the other hind, if q is not known, one could ul.1
seek e.g., the teat favora e prior q 0 , i.e., that
q maximizing (6.2) in general, and for f=f o , (6.8). Hence, by Theorem 5.3(i), one can choose

' and in turn determine archimedean t-conorm T (see
Thus, for f=f , n=2, and A = (A1A2) with, say, (5.22)) which makes the extension pT :A - [Ol]
ydAA AA2 3 A6 A -admissible wrt game Gf 2+, and r

=(2 1 2;Y3 A, ; 4 Al (6 .11) f g( r )r (6.20)
with all yi ,S1 ; so that r

1 It is also easily verified that one can choose for
A=Yu ; A2  1u Y (6.12) fr' f (t,O)=tr+l f (tl)

andfo r, =~ t! -(r+1l)t + r;(6.21)
and (A)=('+')6for all ts[O,l].

q(A1) qy q(Y3); q 2)qy1 )qy 2 )63 Finally, note , using steps 1-8 in section 1 the

Thus, (6.13) shows (6.8) becomes joint perfoSmance sensitivity tradeoff forms:
Tu OVERALL C : LOSS(C )=£JXo-oAV(p) (6.22)

Pf (A~pq;q) = co.((l-q(A 1))q(A I) + (l-q(A 2 ))q(A 2)) LOCAL DFL LOSS: pf, *(cL,p;q)
o l= Co.(2(_y where pcA2 is identified with (PALDP' ' , 1v).
c0( - 4 )y I + (1-Y 3)y3 + (l-Y2 )Yd2).m

(6.1d) This paper has been written to demonstrate-the po-
tential use of the extended DeFinetti-Lindley Un-

Then, by use of Lagrange multipliers, or by inspect- certainty Measure Game in comparing and contrasting
ion of (6.14), it follows that the least favorable various uncertainty measures, including probability
q here is given as and fuzzy sets/possibility. Since the data fusion

aspect is central to all data fusion, choices of
q(Y2)=q0 (Y 3 )=x q0(YI)=qo(Y 4)=(1/2)-x; (6.15) Algetraic Logic Description Pairs can play a key

role in evaluations. Synthesizing the two by usefor any 0 x 5 1/2 . This, by (o.13), is equival- of the sequence of computations leading to the
ent to CJ Design Game appears to be a .2asonable path to

)= q 2 ) = /2 (6.15) take. Thus, one combines the loss function for
. 1the DFL game as a function or the candidate uncert-

which is intuitively one would expect. ainty measure (compared to the optimal bayes, e.g.-
which will always te a function of probability)

Another important concept is:for a given uncertainty with the overall C3 evaluation function. Sensitiv-
. c A , when prior q is not at all known, determine ity to parameter changes can be obtained through
the bgst and worst expected losses for all possible tbp standard use of matrix differentiation as a
prior q. In light of (6.9),(6.10), a reasonable cnained multiplicative function. Of course, be-
approximation or replacement to this is to consider cause of the great number of inputs - even in the

very simplified model proposed here - computation
inf ( (A,p-q) ). (6.16) difficulties arise immediately. On the other hand

over all efficient pruning techniques and judicious use of
prior q variable relations can reduce computations.
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